Quantum Computation

Quantum Computaion atau Komputer kuantum adalah alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.

Teknologi Kuantum dan Komputer Masa Depan

Kecepatan komputer mengolah informasi sangat ditentukan oleh prosesornya. Dalam teknologi digital silikon (konvensional), untuk meningkatkan kecepatan prosesor kerapatan transistor dalam cip prosesor harus ditingkatkan. Upaya untuk meningkatkan kerapatan transistor ini tidak mungkin dilakukan terus menerus tanpa batas karena suatu saat pasti akan mencapai maksimum, yaitu ketika ukuran transistor sudah tidak dapat diperkecil lagi. Pada keadaan ini perlu ditemukan teknologi baru, misalnya teknologi kuantum, untuk meningkatkan kecepatan prosesor.Istilah kuantum (quantum) belakangan ini mulai populer dan sering digunakan dalam berbagai konsep yang memperkenalkan suatu paradigma baru, misalnya quantum learning, quantum teaching, quantum business, dan sebagainya. Kiranya tidak berlebihan jika dikatakan bahwa istilah kuantum pertama kali diperkenalkan oleh Max Planck, seorang fisikawan Jerman, dalam teori kuantum cahaya untuk menjelaskan radiasi benda hitam. Secara tak langsung teori inilah yang melahirkan fisika kuantum yang mempunyai efek dominan pada sistem dalam skala atomik.

Sejalan dengan perkembangan ilmu fisika dan informasi, belakangan ini telah mulai dikembangkan komputasi kuantum yang menggunakan prinsip-prinsip fisika kuantum. Komputasi kuantum ini nantinya diharapkan dapat melahirkan teknologi kuantum yang memungkinkan terobosan teknologi untuk mewujudkan komputer masa depan (komputer kuantum) yang bekerja dengan cara yang sama sekali berbeda dengan komputer konvensional yang dikenal saat ini.

Apa yang membedakan komputer kuantum dari komputer konvensional (digital)? Kita dapat mulai dengan mengamati secuil satuan informasi yang disebut satu bit, yaitu satu sistem fisis yang dapat dinyatakan dalam satu di antara dua keadaan (dua nilai logik) yang berbeda: ya atau tidak, benar atau salah, 0 atau 1. Satu bit informasi dapat diberikan oleh dua keadaan polarisasi cahaya atau dua keadaan elektronik suatu atom. Namun, jika satu atom dipilih untuk merepresentasikan satu bit informasi maka menurut mekanika kuantum di samping kedua keadaan elektronik yang berbeda, atom tersebut dapat pula berada dalam keadaan superposisi (paduan) dua keadaan tersebut. Atom tersebut dapat berada pada keadaan 0 dan 1 secara serentak. Secara umum, satu sistem kuantum dengan dua keadaan atau quantum bit (qubit) dapat dibuat berada dalam suatu keadaan superposisi dari kedua keadaan logiknya.

Superposisi Quantum dan Keterikatan

Dua aspek yang paling relevan fisika kuantum adalah prinsip-prinsip superposisi dan keterikatan / belitan.
  • Superposisi

    Pikirkan qubit sebagai elektron dalam medan magnet. Putaran elektron mungkin sejalan baik dengan bidang, yang dikenal sebagai status spin-up, atau berlawanan dengan bidang, yang dikenal sebagai keadaan spin-down. Menurut hukum kuantum, partikel memasuki status superposisi, di mana ia berperilaku seolah-olah itu di kedua status secara bersamaan. Setiap qubit dimanfaatkan bisa mengambil superposisi dari 0 dan 1.
  • Belitan

    Partikel yang berinteraksi di beberapa titik mempertahankan jenis koneksi dan dapat dijerat dengan saling berpasangan. Dalam proses yang dikenal sebagai korelasi. Mengetahui keadaan spin atau putaran dari satu partikel terjerat – atas atau bawah – memungkinkan seseorang untuk mengetahui bahwa spin dari pasangannya adalah dalam arah yang berlawanan. Belitan kuantum memungkinkan qubit yang dipisahkan oleh jarak yang luar biasa untuk berinteraksi satu sama lain secara instan (tidak terbatas pada kecepatan cahaya). Tidak peduli seberapa besar jarak antara partikel berkorelasi, mereka akan tetap terjerat selama mereka terisolasi.
Secara bersama-sama, superposisi kuantum dan belitan memberikkan peningkatan pada daya komputasi yang sangat besar. Di mana 2-bit register di komputer biasa dapat menyimpan hanya satu dari empat konfigurasi biner (00, 01, 10, atau 11) pada waktu tertentu, register 2-qubit dalam komputer kuantum dapat menyimpan semua empat angka secara bersamaan, karena masing-masing qubit mewakili dua nilai. Jika qubit lebih ditambahkan, peningkatan kapasitas diperluas secara eksponensial. Berdasarkan laporan dari situs telegraph.co.uk, komputer kuantum lebih cepat 100 juta kali lipat dari komputer umum yang ada sekarang ini.

Keterbatasan Komputer Quantum

  • Interferensi

    Selama fase perhitungan kuantum, gangguan sekecil apapun dalam sistem kuantum (seperti foton tersesat atau gelombang radiasi EM) menyebabkan perhitungan kuantum runtuh. Proses ini dikenal sebagai de-koherensi. Sebuah komputer kuantum harus benar-benar terisolasi dari semua gangguan eksternal selama fase perhitungan.
  • Koreksi Kesalahan

    Mengingat sifat dari komputasi kuantum, koreksi kesalahan ultra kritis – bahkan satu kesalahan dalam perhitungan dapat menyebabkan validitas seluruh perhitungan runtuh.
  • Ketaatan Output

    Terkait erat dengan dua poin diatas, mengambil data keluaran setelah perhitungan kuantum adalah risiko yang dapat merusak data.
Sumber :


Komentar

Postingan populer dari blog ini

PT YANG BERGERAK DI BIDANG TIK

Electronic Data Interchange

Parallel Computation